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THE REVERSI13MJTYTHEOREM FOR THIN AIRFOILS IN SUBSONIC AND SUPERSONIC

By CLINTONE. BEOWN

SUMMARY:

A method introduced by .Munk k extended to prore that thg
~i@iw.rce slope of thin m“ngs in either wbsonic or euperwnic
flOW is the same when the dired”on of jfight of the mung is
reremed. It is also 8houm that the wing rerer8al doe8 not change
the th-ickne88 d~g, &rmping&-roU parameter CZP, or the
damping&@tch parameter C=f.

INTRODUCTION

The present report makes use of and extends a paper by
Munk (reference 1)in which simple dynamic concepts me
used to prove that the LiMmrve slope and thickness drag of
supersonic airfoiki viith supersonic edges me the same when
the airfoil is flown in a reversed direction. This extension
of Munk’s work provides a proof that the thickness drag,
lift-curve slope, damping in roII, and the damping-in-pitch
parameter Cw{ remain the same when any airfoil or system
of airfoils is rewraed in both subsonic and supersonic flow.
The theorem applies to cases in which the trailing-edge
velocities are finite; no restrictions are placed on pIan form.

The rewrsibiIity theorem for drag was first obtained by
dfierent methods by yon Kfirm&n (reference 2]. Hayes has
treated the Iifting case for a restricted series of wing types
at supersonic speeds. (See .refmmces 3 and 4.) Eannon
(refermce 5) has extensively treated the stability derivatives
for a restricted group of plan forms at.supersonic speeds.

PROOF

under the assumptions of the linearized potentiaI-flow
theory, ik becomes possible to obtain a great simpliEcation
of subsonic and supersonic lifting-surface problems. The
use of the linear equations of motion allows the boundary
conditions on a lifting surface to be satisfied on a pIane near
the wing surface and permits the use of the superposition
principIe. Consider a set of Cartesian coordinates *,y,z in
which the maxis is taken in the fight. direction and the
z-axis, in the vertical direction. The boundary conditions
become a stipulation of the wmticaLveIocity distribution
over the projection of the wing surface on the xy-plane. As
a result of this simpLillcation, the effects of camber, twist,
angIe of attack, and thickness may be treated separately.

For the complete comprehension of the analysis to foil.cm,
it is necessary to understand the manner in which drag

ultimately appears in the flow field. Two distinct forms of
drag may be found: one associated with a trailing vortex
system, the other with the production of vwree. In the case

FLO?v

of a vort~x wake, the drag show up in the wake a great
distance dovrnstre~min th~form of a-pressure defect vr~ch,
when integrated over a plane normal to the @t Path,

yiehis the drag. This result is identical with that of incom-
pressible flow. The drag produced by wave formation shows
up in the field as a combined momentum and pressure defect;
of course, the thin-airfoil theory predicts a wave drag onIy
at supersonic speeds. h aII cases, the totaI resistance may
be obtained by integrating the momentum transport across
the sides of a box encIosing the wing. It is often coxmenierit. ,.
to place the sides of the box at infinity and allow the top and
bottom to approach the plane of the w@. This procerg
vields for the &as

. .—

(1)

where p is the stream density, # is the disturbance potential,
and the integration taken over both upper and lower sides
extends to infinity. Ifote that the drag is independent of
the main stream direction but depends only on the disturb-
ance potential d. Ih the usmrdproblems, singularities occur
on the wing Ieading edges and care must be taken with the
integration if the quantities in the integrand of equation (1)
are evaIuated on the ~-pIane. hTeglect of the singular
behavior Ieads to the omission of the leading-edge suction
forces. For additional information on the fundamentals of
the Iinear theory, see references 2 and 6.

Thickness drag.-Consider a symmetrical airfoil at zero
mgIe of attack. The potential of the flow maybe expressed
&s

!ll~=T’x + t#~ m

.-

vrhere V is the stre~m docity and ~1 is the disturbance
potential which satisfies the boundary condition

(3)

vrhere~isths airfoiIsnrfacesIope. Inaddition,thepoten-

tiaI must satisfy the USUSIconditions for ph.ysicaIflows such
as the vanishing of the perturbation velocities at. intinity for
subsonic flow and undisturbed flow ahead of the foremost .
Mach via-we in supersonic flow-. Assume the main flow
direction to be reversed. The new potential w-orddresult:-....___

@~= –l”x+#, (4)
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where * Satidh the condition

W9,.0--* “ “
. . .. (5)

By SU~ the sohtions 91 and ~ 8 new poten$hd is
hlrmed:

@#=*,+& (6)

Such a step is quite parmimible inasmucJlas ths differential
equation govenuiug the flows mindependent of the sign of the

stream vtdooity. *
()

The vertical velocity ~ ~-0becomes

zero and tlms a boundary condition for a plate of zero
thickness is sat&&d. Jnasmuch as them am no Mnite
induced velocities at the edges of the resultant wing and
thereforeno ~dge forces, the flat plata can produce no changes
in stream momentum; hence, the momtmtum or pressure
clefecta a great distance downstream in the flow must be
equal to those upstream. Any momentum or premure de-
fectc at in6nity upstream @se fiwm, the reversed airfoil
potential, and the momatum or pr~sure defects a great
distance downstream M% only from the orighml tioil
potential. Since the drag of catchairfoil is eqpal to the mo-
mentum or pressure defects in ita wake, the drag of the two
airfoils must necessarily be equal. It is well known that the
drag of symmetrical bodies-in subsonic .potc@ial flow .k
zero; hence, the reversibility of drag is most pertinent to
supersonic flows. The prceeding proof and discussion fol-
lows eesentially that of &funk (reference 1).

Lift-ourve slope.-hzmuoh as the Wourve slope of a
wing is independent of camber and twist, it is stient to
treat a M-plate airfoil at an angle of attack a. Unlike the
symmetrical-drag case, however, a certarn indeterminaq
exists in the potential whenever subsonic trailiug edges are
present. Subsonic edges occur when the component of
stream velocity normal to the edge is subsonic. In order to
remove this indcterminacyit ismec- to specify thecircula-
tion. Ths use of the Kutta oohdition is an apm”ate means
for this process because, in e&ect, an additional boundary
rendition is imposed. This requirement, that the vekdies
at ths trailing edge be Mte, is indeed a pl@cal condition
arising from the fact that the boundary layer, alwa~
present at trailing ed~, would separate from the edge rather
than accommodate the high adverse accelerations around the
edge. It is exactIy the Kutta condition which leads to unique
solutions and which is necessary to prove the reversibility
theorem.

The potential of the ilat-plate airfoiImay now be written:

@l=T%+& (n

where *1is the disturbance potential satisfying the conditions
that the tr@ng+dge velocities are bite and the bounda~
oondition —.

(8)

The drag of the wing can be titten:

D,= L,a-Fi “ “ (9)

where F is the componant parallel to the surhaccof the m-
sdtant force, usually known in linear theory as the kwdi~
edge suction force, and Z is the lift forco.

As in the drag,case, the rownwxMrcam velocity pmdums
the potential

where & satish the Kuttu coudition and [kc Ixxudary
ccmdition

I ah
.Inr’a ““ (11)

Thedragisncw

Ds=LgLY-F, (12)

The superposition of the potential&on mlrcsulte iu(hc flow
over a flat plate of zero angle of attnrk.

Ths drag of the eombiied airfoils is now

G= F,-F, (13)

provided the superposition has not changed thu Idbg-edge
suction foroes Z’l”and Z’z. Those suction forms have bwn
shown (references7 to 9) to bo dependent on the asymp(olic
distribution of vc@ici~y as the edge ~ apppxmhml; suction
forces are obtained only when the vm’texStlWl#h nppronchrs
in6nity at the edge, this condition oorrcspomiing to infinite
upwash velocity around the edge. Inasmuch as the super-
position of a solution having finito-cdgo Aocitios dooe not
alter the asymptotic strength of tho singularities at tlw c*,
it follows that the edge forces wiii be unchanged by [kc
supposition.

~CR a mmentum balance in the stream is form~, thl~
upstream momentum and pmssum dcfocta in the comMncd-
airfoil case differ * the ~ownstream momentum and
pressure defects by the dikrenec in the suction forms L+.
The upstream mcmtmtum and pressure dcfccte are, however,
equal to Z4, whereas those downstream are qual to &
Therefme,

Z7+D,=F,–F1 (14}

or from equations (9) and (12)

L@=L#Y (i5)

The lif@ L and L are equal and, therefore, the lift-curve
slopes am equal. Obviously, the lifkcurve slopos of camborcd
and twisted wings am also unchaugod whcu the airfoil is re-
versed. It is important to note that the drags am not cqusl
unless the suction forces are zero or cancel.

In reference 4, the conclusion is rcachad LIM the Iift
theorem.cannot be a general one; howaver, it appcms that
this oontiluzionwas dcdueed from an equation of insufkient
_jY. Heed, the analysis of the proaentreport shows
the lift theorem to apply to all plan forms so long as lho
Kutta tindition is applied to subsonic trailii odgos.

Damping in rolk-l%e proof for the reversibility of damp-
ing in ~11 proceeds in the same manner as that for tho Iifl..

--
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THE REVERSIBILITY “THEOREM

The roIIing moment of the thin wing may be
foIIows:
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expressed as

(16)

where Ap is the pressure difference between the upper and
Io-iversurface.and S’ is the wing area.

The “drag of the Iin.ea.rlytwisted wing used to represent
the rolling flat plate is

JD= s~p,a dS–F, (17)

The drag may be expresseclas a function of the rolling mo-

ment inasmuch as a=p~ where p k the angular velocity in
T

roll. For the twisted wing,

The drag of the reversed airfoil is then

D,=+ L;–F,

(1s)

(19)

Superposing the disturbance potential of the reversed airfoil
again cancels the -iringslopes, and the resulting momentum
change at the combined airfoils becomes

D3=F,–F, (20)

Estabkhing the conservation of momentum in the flow, as
was clone for the liftirg case, gives the remdt:

Th~reforc, the rolling moment for the reversed airfoil is the
same as that of the unreversed airfoil. It follows then that
the roMng-moment deri~atire C~Pfor any wing is unchanged
by reverwd.

Steady pitching moment.—The pitching moment of a wing
LLndergoinga steady pitching velocity q about. the point
q may be written

(22)

where Z. is the reference point. about which moments are
taken. The drag of the cambered--wingsurface representing
the stead-y pitching motion is

JD= /pa di3-F (23)

and the IocaI angle of attack for such.a wing is

(24)

Hence, the drag may be eqmessed from equations (22) to (24)
as folIows:

D=+ M-F (25) ._

Performing the superposition of reversed potentiaI and origi-
nal potentiaks.yielcIsan airfoil of zero angle of. attacli; the
momentum balance, as for the steady roIIing case, cancels the
suction forces to leave:

The pitch~g moments of the two airfoils are the same and,
therefore, the clamping-in-pitch parameter C.q is unchanged
by a reversal of the wing.

DISCUSSION

Inasmuch as the analysis presented is unrestricted as to
pIan form, it follows that any system of airfoils will obey
the reversibilityy theorem; this does not allow for the reversal
of the indivichml airfoils but only for the reversal of the.. .
compIete system. Incteecl, the same result holds for groups
of airfofls in dtierent- horizontal planes, provided the bounci-
ary conclitions for each wing are satisfied in the plaue of the
wing. It should be noticed that the pitthing-moment
coefficients, lift coefficients due to pitching, and the constants. ” .-”
arising from camber such as CYL.Oare not generaIIy the
same when the wing is reversed.

LANGLEY .tiRON.IITTIC.+L L.+BOFWTORY,
NTATIOPLkLAD1’IsoRy C03LuITTEE FOR AERONAUTICS,

LANGLEY FIELD, YA., June 96, 19.@.
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